Extended Comparisons of Best Subset Selection, Forward Stepwise Selection, and the Lasso Following “Best Subset Selection from a Modern Optimization Lens” by Bertsimas, King, and Mazumder (2016)
نویسندگان
چکیده
In exciting new work, Bertsimas et al. (2016) showed that the classical best subset selection problem in regression modeling can be formulated as a mixed integer optimization (MIO) problem. Using recent advances in MIO algorithms, they demonstrated that best subset selection can now be solved at much larger problem sizes that what was thought possible in the statistics community. They presented empirical comparisons of best subset selection with other popular variable selection procedures, in particular, the lasso and forward stepwise selection. Surprisingly (to us), their simulations suggested that best subset selection consistently outperformed both methods in terms of prediction accuracy. Here we present an expanded set of simulations to shed more light on these comparisons. The summary is roughly as follows: • neither best subset selection nor the lasso uniformly dominate the other, with best subset selection generally performing better in high signal-to-noise (SNR) ratio regimes, and the lasso better in low SNR regimes; • best subset selection and forward stepwise perform quite similarly throughout; • the relaxed lasso (actually, a simplified version of the original relaxed estimator defined in Meinshausen, 2007) is the overall winner, performing just about as well as the lasso in low SNR scenarios, and as well as best subset selection in high SNR scenarios.
منابع مشابه
Best Subset Selection via a Modern Optimization Lens
In the last twenty-five years (1990-2014), algorithmic advances in integer optimization combined with hardware improvements have resulted in an astonishing 200 billion factor speedup in solving Mixed Integer Optimization (MIO) problems. We present a MIO approach for solving the classical best subset selection problem of choosing k out of p features in linear regression given n observations. We ...
متن کاملA New Hybrid Feature Subset Selection Algorithm for the Analysis of Ovarian Cancer Data Using Laser Mass Spectrum
Introduction: Amajor problem in the treatment of cancer is the lack of an appropriate method for the early diagnosis of the disease. The chemical reaction within an organ may be reflected in the form of proteomic patterns in the serum, sputum, or urine. Laser mass spectrometry is a valuable tool for extracting the proteomic patterns from biological samples. A major challenge in extracting such ...
متن کاملAn Overview of the New Feature Selection Methods in Finite Mixture of Regression Models
Variable (feature) selection has attracted much attention in contemporary statistical learning and recent scientific research. This is mainly due to the rapid advancement in modern technology that allows scientists to collect data of unprecedented size and complexity. One type of statistical problem in such applications is concerned with modeling an output variable as a function of a sma...
متن کاملA Model for Project Selecting with Limited Resources in Data Envelopment Analysis with Input and Output Fuzzy
In Evaluating Performance, Selecting a Subset from a Set of Solutions with Limited Resources is Essential. If There Is More Than One Input and Output, the Data Rnvelopment Analysis Optimization Models Are Evaluated and Performance Measurement Based on the Weighted Output Is Divided Weighted Input. In This Research, Two Models of Optimization with Limited Resources Present from Data Envelopment ...
متن کاملFeature Selection in Structural Health Monitoring Big Data Using a Meta-Heuristic Optimization Algorithm
This paper focuses on the processing of structural health monitoring (SHM) big data. Extracted features of a structure are reduced using an optimization algorithm to find a minimal subset of salient features by removing noisy, irrelevant and redundant data. The PSO-Harmony algorithm is introduced for feature selection to enhance the capability of the proposed method for processing the measure...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017